Центр экстракорпоральной гемокоррекции
телефон: +7 (495) 772 0358



Запись на консультацию:
телефон: +7 (499) 324 9721 - с 900 до 1700

Online-форма записи - круглосуточно
  
К общему оглавлению раздела - Цирроз печени




Очищение крови

Физиология печени









Печень представляет собой центральный орган химического гомеостаза организма, где создается единый обменный и энергетиче¬ский пул для метаболизма белков, жиров и углеводов. К основным функциям печени относятся обмен белков, углеводов, липидов, ферментов, витаминов; водный и минеральный обмен, пигментный обмен, секреция желчи, детоксицирующая функция. Все обменные процессы в печени чрезвычайно энергоемки. Основными источниками энергии являются процессы аэробного окисления цикла Кребса и нуклеотиды, выделяющие значитель¬ное количество энергии в результате высвобождения фосфатидных связей при переходе аденозинтрифосфата в аденозиндифосфат.


Белковый обмен в печени
Печень ответственна как за основные анаболи¬ческие, так и за катаболические процессы обмена белков. Синтез белков в печени осуществляется из свободных аминокислот. Это прежде всего экзогенные аминокислоты, поступающие с кровью воротной вены из кишечника. Приток этих аминокислот в печень зависит от количественного и качественного состава пищи, активности пищеварительных ферментов, фазы пищеварения и т. д. Колебания поступления аминокислот в нормальных условиях соответствуют суточному циклу активности печеночных клеток.
Эндогенные свободные аминокислоты образуются в организме вследствие физиологического клеточного распада в других орга¬нах. Обычно приток указанных веществ в печень относительно постоянен. Небольшое количество аминокислот образуется в самой печени из углеводов и жирных кислот.
Печень является единственным местом синтеза альбуминов, фибриногена, протромбина, проконвертина, проакцелерина. Основная масса ?-глобулинов, значительная часть ?-глобулинов, гепарина, ферментов также образуется в печени. Синтез белков и многочисленных ферментов осуществляется в гепатоцитах рибосомами. Собственные белки и ферменты печеночных клеток синтезируются на свободных рибосомах и полисомах гиалоплазмы гепатоцитов, не связанных с мембранами эндоплазматического ретикулума. Синтез белков «на экспорт» осуществляется рибосомами зернистого эндоплазматического ретикулума.
Большинство заболеваний печени с тяжелыми повреждениями паренхимы сопровождается снижением уровня как альбуминов, так и α-глобулинов. Гипоальбуминемия - один из характерных признаков острой и хронической недостаточности печени.
Синтез гама гбулинов осуществояется главным образом плазматическими клетками. Купферовские клетки печени, как показали радиоизотопные исследования, также участвуют в их синтезе. Значительное повышение уровня ?-глобулинов крови при заболеваниях печени с выраженной иммунной реакцией связано не только с общей реакцией ретикулоэндотелиальной ткани, но и с плазматической инфильтрацией.
Печень не только синтезирует такие важнейшие компоненты свертывающей системы крови, как протромбин, фактор VII, но и наряду с другими органами участвует в образовании гепарина. Вследствие этого система свертывания крови в значительной мере зависит от белковосинтетической функции печени и патологических изменений гепатоцитов.
В печени осуществляются все этапы расщепления белков до образования аммиака и мочевины. Протеолитические ферменты расщепляют тканевые и сывороточные белки до низкомолекулярных соединений. Ферменты дезаминирования, окисления, входящие в цикл Кребса, производят дальнейшее многоэтапное расщепление пептидных соединений и аминокислот. При значительных поражениях паренхимы, особенно при массивных некрозах, повышается уровень свободных аминокислот, остаточного азота в крови; при этом значительная часть свободных аминокислот выделяется с мочой. В печени из свободных аминокислот наряду с их разрушением с образованием мочевины и частичной реутилизацией, с новообразованием белков синтезируются жирные кислоты и кетоновые тела. Следовательно, фрагменты белкового обмена в печени включаются в обменные циклы других веществ.
Печень осуществляет катаболизм нуклеопротеидов с их расщеплением до аминокислот, пуриновых и пиримидиновых оснований. В печени последние превращаются в мочевую кислоту, выделяемую затем почками. Важно отметить, что конечные этапы катаболических изменений белковых тел в печени одновременно представляют ее детоксицирующую функцию.


Углеводный обмен в печени
Печень играет центральную роль в многочисленных реакциях промежуточного обмена углеводов. Среди них особенно важны превращение галактозы в глюкозу; превращение Фруктозы в глюкозу; синтез и распад гликогена; глюконеогенез; окисление глюкозы; образование глюкуроновой кислоты.
Превращение галактозы в глюкозу. Галактоза поступает в организм в составе молочного сахара. В печени происходит ее превращение через уридиндифосфогалактозу в глюкозо-1-фосфат. При нарушении функции печени способность организма использовать галактозу снижается, на этом основана функциональная проба печени с нагрузкой галактозой.
Превращение фруктозы в глюкозу. Печень превращает фруктозу во фруктозо-1-фосфат (Ф-1-Ф) с помощью содержащейся в ней специфической фруктокиназы при участии АТФ. Фрукто-зо-1-фосфат расщепляется в печени альдолазой типа В, как и фруктозо-1, 6-дифосфат - промежуточный продукт обмена глюкозы, превращаясь в диоксиацетонфосфат и 3-фосфоглицерино-вый альдегид. Часть фруктозы под действием гексокиназы превращается в фруктозо-6-фосфат, промежуточный продукт основного пути распада глюкозы. Под действием глюкозофосфатизомера-зы фруктозо-6-фосфат превращается в глюкозо-6-фосфат (Г-6-Ф). Исследование утилизации фруктозы положено в основу одной из функциональных проб печени, которая в настоящее время в клинике используется мало.
Синтез и распад гликогена. Гликоген синтезируется из активированной глюкозы, т. е. из Г-6-Ф. Печень может синтезировать гликоген и из других продуктов углеводного обмена, например из молочной кислоты. Распад гликогена в печени происходит и гидролитически, и (преимущественно) фосфоролитически. Под действием фосфорилазы образуется Г-1-Ф, который превращается в Г-6-Ф; последний включается в различные метаболические процессы. Печень служит единственным поставщиком глюкозы в кровь, так как только под влиянием печеночной микросомальной Г-6-фосфатазы из Г-6-Ф освобождается глюкоза. Таким образом, под влиянием обратимых реакций синтеза и распада гликогена регулируется количество глюкозы в соответствии с потребностями организма. Уровень гликогена регулируется гормональными факторами: АКТГ, глюкокортикоиды и инсулин повышают содержание гликогена в печени, а адреналин, глюкагон, соматотропный гормон и тироксин понижают.
Глюконеогенез. Глюкоза может синтезироваться из различных соединений неуглеводной природы, таких, как лактат, глицерин, некоторые метаболиты цитратного цикла и глюкопластические аминокислоты (глицин, аланин, серии, треонин, валин, аспарагиновая и глютаминовая кислоты, аргинин, гистидин, пролин и оксипролин). Глюконеогенез связывает между собой обмен белков и углеводов и обеспечивает жизнедеятельность при недостатке углеводов в пище.
Образование глюкуроновой кислоты. С обменом углеводов связан синтез глюкуроновой кислоты, необходимой для конъюгации плохо растворимых веществ (фенолы, билирубин и др.) и образования смешанных полисахаридов (гиалуроновая кислота, гепарин и др.).
В основе нарушений обмена углеводов при заболеваниях печени лежат повреждения митохондрий, которые ведут к снижению окислительного фосфорилирования. Вторично страдают функции печени, требующие расхода энергии - синтез белка, эстерификация стероидных гормонов. Дефицит углеводов приводит также к усилению анаэробного гликолиза, вследствие чего в клетках накапливаются кислые метаболиты, вызывающие снижение рН. Следствием этого является разрушение лизосомальных мембран и выход в цитоплазму кислых гидролаз, вызывающих некроз гепатоцитов.


Жировой обмен в печени
Печень играет ведущую роль в обмене липидных веществ - нейтральных жиров, жирных кислот, фосфолипидов, холестерина. Участие печени в обмене липидов тесно связано с ее желчевыделительной функцией: желчь активно участвует в ассимиляции жиров в кишечнике. При нарушении образования или выделения желчи жиры в повышенном количестве выделяются с калом. Желчь усиливает действие панкреатической липазы и вместе с рядом других веществ участвует в образовании хиломикронов. Гепатоциты с помощью микроворсинок непосредственно захватывают липиды из крови. В печени осуществляются следующие процессы обмена липидов: окисление триглицеридов, образование ацетоновых тел, синтез триглицеридов и фосфолипидов, синтез липопротеидов, синтез холестерина.
Гидролиз триглицеридов на глицерин и жирные кислоты происходит под действием внутрипеченочных липолитических ферментов. Печень является центральным местом метаболизма жирных кислот. В ней происходит синтез жирных кислот и их расщепление до ацетилкофермента А, а также образование кетоновых тел, насыщение ненасыщенных жирных кислот и их включение в ресинтез нейтральных жиров и фосфолипидов с последующим выведением в кровь и желчь. Катаболизм жирных кислот осуществляется путем ?-окисления, главной реакцией которого является активирование жирной кислоты с участием кофермента А и АТФ. Освобождающийся ацетилкофермент А подвергается полному окислению в митохондриях, в результате чего клетки обеспечиваются энергией. Следует отметить, что в печени образуется лишь 10% общего количества жирных кислот, основным местом их синтеза является жировая ткань. Кетоновые тела (ацетоуксусная, бета -оксимасляная кислоты и ацетон) образуются почти исключительно в печени. В норме их содержание в плазме не превышает 10 мг/л, а при сахарном диабете оно может увеличиться в сотни раз. Возникающий в патологических условиях кетоз связан с диссоциацией кетогенеза в печени и утилизацией кетоновых тел в других органах. Из жирных кислот, глицерина, фосфорной кислоты, холина и других оснований печень синтезирует важнейшие составные части клеточных мембран - различные фосфолипиды. Синтез нейтральных жиров и фосфолипидов связан главным образом с митохондриями, а также с гладким эндоплазматическим ретикулумом.
Синтез холестерина в основном происходит в печени и кишечнике, где образуется более 90% всего холестерина. Холестерин представляет собой важную составную часть плазмы крови и используется для синтеза кортикостероидных гормонов и витамина D. Основная масса холестерина синтезируется гладкой эндоплазматической сетью. Уровень холестерина поддерживается постоянным в результате синтеза, катаболизма и выведения избыточного количества с желчью в кишечник: пятая часть его выделяется с калом, а большая часть всасывается вновь, обеспечивая печеночно-кишечную циркуляцию. Печеночные клетки полностью ответственны за удаление избыточного количества холестерина из организма путем выведения как самого холестерина, так и его производных (желчные кислоты) с желчью. Нарушение печеночно-кишечной циркуляции вследствие окклюзии желчевыводящих путей приводит к резкому возрастанию синтеза желчных кислот из холестерина.
В печени происходит синтез липопротеидов, особой транспортной формы фосфолипидов, нейтральных жиров и холестерина. Предполагают, что фосфолипиды служат связующим звеном между белком и липидным компонентом. В зависимости от того, с какой фракцией сывороточных белков они передвигаются, при электрофорезе различают ?-, ?- и пре-?-липопротеиды. Пре-?-липопротеиды - главная транспортная форма эндогенных триглицеридов.


Пигментный обмен в печени
Возникновение желтухи всегда обусловлено нарушением обмена билирубина, который образуется в результате распада гемоглобина эритроцитов и разрушения гема. Этот процесс является естественной составной частью постоянного обновления красной крови в организме.


Образование билирубина в печени
Гемоглобин превращается в билирубин в ретикулоэндотелиальной системе, главным образом в печени, селезенке и костном мозге посредством сложного комплекса окислительно-восстановительных реакций. Конечным продуктом распада является биливердин, не содержащий железа и белковой части. Клетки ретикулоэндотелиальной системы выделяют в кровь непрямой, свободный билирубин. За сутки у человека распадается около 1% циркулирующих эритроцитов с образованием 100 - 250 мг билирубина, при этом 5 - 20% билирубина образуется из гемоглобина не зрелых, а преждевременно разрушенных эритроцитов и из других гемсодержащих веществ. Это так называемый шунтовои или ранний билирубин.
Исследованиями с введением в организм изотопных предшественников гема (15N- и 14С-глицин) установлено, что большинство образующихся меченых желчных пигментов выделяются с калом в виде уробилина или стеркобилина в период между 90-м и 150-м днем после введения изотопа, что соответствует продолжительности жизни эритроцитов [Gray С. Н., 1950, 1959; London J. М., 1950].
Выявлено незначительное содержание меченого пигмента в кале сразу же после применения изотопного предшественника, составляющее от 10 до 20% всей меченой пигментной экскреции, что соответствует раннему, или шунтовому, билирубину.
Значительное увеличение образования раннего билирубина обнаружено при болезнях, связанных с неэффективным эритропоэзом, таких, как железодефицитная анемия, пернициозная анемия, талассемия, сидеробластическая анемия, эритропоэтическая порфирия, свинцовое отравление. При этих состояниях количество раннего пигмента колеблется от 30 до 80% всех желчных пигментов. Больные с этой патологией имеют значительно увеличенную фекальную уробилиногенную экскрецию как следствие увеличенного тотального желчного пигментного оборота, но без укорочения жизни эритроцитов периферической крови.
Существование второго неэритроцитного компонента раннего билирубина доказано с применением меченой аминолевулиновой кислоты, являющейся маркером гема из других источников. Наиболее вероятным источником неэритроцитного гема служат печеночные протеиды: миоглобин, цитохромы, каталаза и триптофанпирролаза печени.
Экспериментально установлено, что печеночная часть раннего билирубина может увеличиваться после анестезии, применения фенобарбитала. Этим может объясняться повышение сывороточного билирубина, часто наблюдаемое непосредственно после операции [Israels L. G., 1970].


Обмен билирубина в печени
Печень выполняет три важнейшие функции в обмене билирубина: захват билирубина из крови печеночной клеткой, связывание билирубина с глюкуроновой кислотой и выделение связанного билирубина из печеночной клетки в желчные капилляры. Перенос билирубина из плазмы в гепатоцит происходит в печеночных синусоидах.
Свободный (непрямой) билирубин отделяется от альбумина в цитоплазменной мембране, внутриклеточные протеины захватывают билирубин и, возможно, ускоряют перенос билирубина в гепатоцит (рис. 10). A. J. Levi и соавт. (1969) изолировали из цитоплазмы печени 2 неспецифических связывающих протеина, обозначенных как Y- и Z-протеины, которые, по мнению авторов, отвечают за большую часть внутриклеточного захвата билирубина. Протеин У присутствует в печени в относительно большом количестве и связывает также другие органические анионы, такие, как бромсульфалеин, метаболиты кортизона [Litmack G., 1971]. Предполагают, что печеночная мембрана активно участвует в захвате билирубина из плазмы. В подтверждение этого приводятся данные об угнетении рифампицином печеночного подъема билирубина раньше, чем включаются неспецифические связывающие протеины.
Непрямой билирубин в клетке переносится в мембраны эндоплазматической сети, где билирубин связывается с глюкуроновой кислотой. Эта реакция катализируется специфическим для билирубина ферментом УДФ-глюкуронилтрансферазой. Соединение билирубина с сильно поляризующей глюкуроновой кислотой делает его растворимым в воде, что и обеспечивает переход в желчь, фильтрацию в почках и быструю (прямую) реакцию с диазореактивом.
Схема транспорта билирубина в печеночной клетке
Рвс. 1. Схема транспорта билирубина в печеночной клетке (по L. Schiff).
А- разрушенные эритроциты; Б - ранний билирубин. В - свободный (непрямой) билирубин. 1 - синусоид; 2' - гладкий эндоплазматический ретикулум; 3 - ядро; 4 - аппарат Гольджи; 5 - желчный каналец; YZ - цитоплазматические протеины.
Образующийся пигмент называется связанным или прямым билирубином.
Новые микроаналитические методики, такие, как тонкослойная газовая хроматография и спектроскопия, позволили подтвердить первоначальную точку зрения о существовании 2 типов конъюгатов: диглюкуронида, в котором на 1 молекулу билирубина приходится 2 молекулы глюкуроновой кислоты (пигмент II), и моноглюкуронида, или соединения несвязанного билирубина и диглюкуронида (пигмент I). Многочисленными хроматографическими исследованиями показано существование конъюгатов билирубина с серной и фосфорной кислотами, но их физиологическое значение невелико.


Транспорт билирубина
Выделение билирубина в желчь представляет собой конечный этап обмена пигмента в печеночных клетках. В желчи обнаруживается лишь небольшое количество несвязанного билирубина, связывание требуется для экскреции пигмента печенью. О механизмах переноса билирубина из печени в желчь известно мало; определенную роль играет градиент концентрации. Некоторые вещества конкурируют с билирубином за путь выделения в желчь и могут вызвать желтуху. К ним относятся анаболические стероиды с С17-замещенным радикалом, рентгеноконтрастные препараты для холецистографии, бромсульфалеин. G. D. Raymond, J. Т. Galambos (1971) при исследовании максимальной экскреции билирубина у человека показали, что печень способна выделить пигмента в 10 раз больше, чем его образуется в физиологических условиях. Таким образом, у здорового человека есть большой функциональный резерв для экскреции билирубина. При ненарушенном связывании переход билирубина из печени в желчь зависит от скорости секреции желчи. Предполагают, что экскреция билирубина находится под гормональным контролем, так как скорость выделения связанного билирубина уменьшается у гипофизэктомированных животных и может быть нормализована гипофизарными гормонами или тироксином [Gartner L. M., Arias I. M., 1972]. Билирубин выделяется из печени в желчь с помощью цитоплазматических мембран билиар-ного полюса гепатоцита, лизосом и аппарата Гольджи.


Образование фекальных желчных пигментов
Связанный билирубин в желчи образует макромолекулярный комплекс (мицеллу) с холестерином, фосфолипидами и желчными солями. С желчью билирубин выводится в тонкий кишечник (рис. 11 цветной). У взрослого человека кишечные бактерии восстанавливают пигмент с образованием уробилиногена.
Небольшая часть билирубина (около 10%) восстанавливается до уробилиногена на пути в тонкий кишечник во внепеченочных желчных ходах и желчном пузыре. Из тонкого кишечника часть образовавшегося уробилиногена всасывается через кишечную стенку, попадает в v.portae и током крови переносится в печень (так называемая кишечно-печеночная циркуляция уробилиногена). В печени пигмент полностью расщепляется. Однако незначительное количество уробилиногена может попадать в общий круг кровообращения и тогда определяется в моче (0 - 4 мг/сутки).
Основное количество уробилиногена из тонкого кишечника поступает в толстый и выделяется с калом. Количество фекального уробилиногена варьирует от 47 до 276 мг в день в зависимости от массы тела и пола (у мужчин немного больше).
Исследованиями J. R. Bloomer (1970) установлено, что в норме только 50% дневной продукции билирубина выявляется в виде фекального уробилиногена. Это несоответствие связано с различными превращениями билирубина в кишечнике и методическими трудностями его определения.
Мочевая экскреция желчных пигментов. Уробилиноген, определяющийся в моче у здоровых людей в небольшом количестве, может повышаться при увеличении фекального уробилиногена (гемолиз), а также когда имеется повышенный уровень связанного билирубина в плазме. Клиническое значение имеет то, что при нарушении функции печени уробилиноген может быть обнаружен в моче до того, как выявляется желтуха. При механической желтухе уробилиноген в моче отсутствует.
Билирубин в моче (желчные пигменты) появляется только при увеличении в крови связанного (прямого) билирубина.
Внешнесекреторная функция печени. Образование и выделение желчи имеет жизненно важное значение для организма.
Желчь - сложный водный раствор органических и неорганических веществ, с осмотическими свойствами, близкими к таковым плазмы. Основными органическими компонентами желчи являются желчные кислоты, фосфолипиды, холестерин и желчные пигменты. Другие органические составляющие, включая протеины, присутствуют в очень малых концентрациях- Желчные кислоты и фосфолипиды (лецитин) составляют основную часть твердой фракции желчи. В печеночной желчи человека нормальные концентрации желчных кислот имеют значения от 3 до 45 ммоль/л (140 - 2230 мг%) или 8 - 53% общей твердой части желчи, концентрация лецитина от 1,4 до 8,1 г/л или от 9 до 21% твердой части, концентрация холестерина от 2,52 до 8,32 ммоль/л (97 - 320 мг%), что соответствует 3 - 11% твердого осадка. Концентрация билирубина определяется цифрами от 205,25 до 1197,28 мкмоль/л (12 - 70 мг%) или от 0,4 до 2% твердого осадка. В желчном пузыре концентрация всех составляющих значительно выше, что связано с реабсорбцией воды и неорганических электролитов.
Важность определенного содержания желчных кислот и фосфолипидов для растворения холестерина показана в исследованиях В. А. Галкина, В. А. Максимова (1975), М. Ф. Нестерина (1967).
Сложилось мнение, что фиксированное соотношение концентрации желчных кислот, фосфолипидов и холестерина обеспечивает им более высокую растворимость в воде.
Речь идет об образовании устойчивой мицеллы, которая впоследствии была названа липидным комплексом. На его поверхности могут адсорбироваться другие компоненты желчи [Нестерин М. Ф., 1967].
Физиологическая роль липидного комплекса заключается, таким образом, в обеспечении не только эффективного пищеварения, но и функционирования особой выделительной системы: из печени в кишечник.
Основные компоненты желчи (желчные кислоты, фосфолипиды, холестерин), всасываясь в кишечнике, постоянно совершают печеночно-кишечный круговорот, что позволяет поддерживать оптимальную концентрацию активных компонентов желчи в период пищеварения, а также разгружает обмен веществ и облегчает синтетическую работу печени. Нарушения состава желчи могут способствовать образованию конкрементов в желчевыводящих путях.
Желчные кислоты (ЖК) являются важнейшим стабилизатором коллоидного состояния желчи. Достигнуты определенные успехи в изучении обмена желчных кислот и нарушений их метаболизма при различных поражениях печени.


Биосинтез желчных кислот
Желчные кислоты синтезируются из холестерина, и на это расходуется около 40% его содержания в организме [Dietschy I. M. et al., 1970]. В печени человека образуются две 2 4-углеродные желчные кислоты: холевая (ХК) и хенодезоксихолевая (ХДХК).
Первым этапом при синтезе холевой кислоты является 7α-гидроксилированяе холестерина с образованием 5-холестен-Зβ, 7α-диола, которое катализируется микросомальной фракцией гомогената печени. Затем через серию промежуточных реакций, включающих 12α-гидроксилирование и редуци рование двойной связи в 5 положении, образуется 5 β-холестен-3α, 73α, 12α-триол. Окисление его боковой цепи, катализируемое митохондриальной фракцией гомогената печени, приводит к образованию холевой кислоты или, точнее, холил-КоА-эстера
Структурные изменения, происходящие при преобразовании холестерина в хенодезоксихолевую кислоту, те же самые, что и при образовании ХК, за исключением введения 12α-гидроксильной группы.
Скорость синтеза ХК у людей, изученная радиоизотопным методом, составляет около 200 - 300 мг/сут и равна скорости синтеза ХДХК. Общий синтез первичных ЖК, таким образом, составляет у здорового взрослого человека приблизительно 400 - 600 мг/сут. В нормальных условиях это количество равно суточной потере ЖК с калом и мочой.
При различных состояниях, ведущих к уменьшению пула ЖК (потеря желчи через фистулу, прием холестирамина, резекция тонкой кишки), синтез ЖК увеличивается в 5 - 10 раз [Javitt N., 1968; Hauton I. et al., 1968; Mosbach E. H., 1972]. В противовес этому внутривенное или пероральное введение ЖК угнетает холатообразование [Фердман Д. П., 1966; Скуя Н. А., 1972]. Эти данные позволили прийти к заключению, что биосинтез ЖК регулируется по типу обратной отрицательной связи на основании количества ЖК, проходящих через печень в единицу времени. В опытах in vitro на крысах и на изолированной печени кролика показано, что основным ферментом, регулирующим биосинтез ЖК, является 7α-гидроксилаза; 12α-гидроксилаза может выполнять вторичную регулирующую функцию, определяя отношение ХК/ХДХК.


Конъюгация желчных кислот
Образующиеся на конечном этапе синтеза ЖК КоА-эстеры желчных кислот связываются с таурином (Т) или глицином (Г). При этом образуются тауро- и глицинконъюгаты ЖК. Отношение Г/Т конъюгатов зависит от возраста, питания, гормонального профиля и колеблется у здоровых людей от 2 до 6. Увеличение коэффициента Г/Т до 9 - 15 наблюдается при выключении активного илеального транспорта ЖК, потере желчи через фистулу желчного пузыря и приеме холестирамина, а также при изменении бактериальной флоры кишечника [Garbitt J. et al., 1971].
У здоровых людей в сыворотке крови содержится небольшое количество неконъюгированных (свободных) ЖК, а в желчи обнаруживаются только следы свободных ЖК.
Неконъюгированные ЖК менее растворимы и легко осаждаются из раствора, образуя физиологически неактивные соединения ЖК при рН 6,5 - 7,0. рН пузырной желчи колеблется от 6 до 7, а печеночной от 7,3 до 7,7, соли конъюгированных ЖК выпадают в осадок лишь при рН 4,3 - 5,0, почти не наблюдающейся в кишечнике. Конъюгация снижает константу ионизации желчных кислот. Неионизированные ЖК абсорбируются в тощей и проксимальном отделе подвздошной кишки посредством пассивной неионной диффузии со скоростью, пропорциональной их внутрикишечной концентрации и активности [Dietshy I. M. et al., 1968]. Конъюгация служит для предотвращения преждевременной абсорбции ЖК в проксимальном отделе тонкого кишечника и удерживает эти важные соединения в просвете кишки в концентрациях, достаточных для осуществления мицеллярной фазы переваривания и абсорбции жиров [Carey 1. В., 1973].
В случаях деконъюгации ЖК ненормально пролиферирующей бактериальной флорой в тонкой кишке они быстро всасываются, что может привести к недостаточной для абсорбции жиров внутрикишечной концентрации желчных кислот и стеаторее [Rosenberg I. H. et al., 1967]. Недавно было показано, что в печени человека желчные кислоты связываются не только с аминокислотами, но и сульфатными группами [Palmer R. H., Bolt M. D., 1971]. Однако в нормальных условиях этот процесс, по-видимому, не играет важной роли в метаболизме полигидроксилированных желчных кислот.
Кишечно-печеночная циркуляция желчных кислот. В нормальной желчи большинство желчных кислот не вновь синтезированы, а реабсорбированы из кишечника и доставлены в печень.
Можно выделить два пути возвращения желчных кислот. Портальный путь, когда вещества, абсорбированные из кишечника, попадают в воротную вену и транспортируются непосредственно в печень, и экстрапортальный путь, когда всосавшиеся в кишечнике вещества по лимфатическим путям проходят в лимфатический проток, а затем в верхнюю полую вену и разносятся током крови по всему организму (рис. 12). В печень эти вещества возвращаются через печеночную артерию.
Основная масса всосавшихся в кишечнике желчных кислот (98%) поступает в печень по системе воротной вены, а около 2% желчных кислот по лимфатическим путям попадают в общий кровоток, а затем захватываются печенью. ЖК, абсорбированные из просвета кишечника, попадая в воротную вену, связываются с альбумином и транспортируются в печень.
Эндотелиальный барьер печеночных синусоидов эффективен только для эритроцитов, так что желчные кислоты, как и другие вещества, связанные с белком плазмы (билирубин, бромсульфалеин, индоциан зеленый), легко проходят в пространство Диссе, приближаясь к микроворсинчатой поверхности гепатоцитов [Henry О. et al., 1972].
Фаза насыщения в процессе поглощения бромсульфалеина, а также конкурентные отношения между билирубином, бромсульфалеином и индоцианом позволяют предположить существование медиаторов - переносчиков для транспорта веществ из пространства Диссе в гепатоцит.
При однократном прохождении крови через печень извлекается около 90 - 95% ЖК. Благодаря такой эффективности захвата гепатоцитами уровень ЖК в периферической крови крайне низок. Почечный клиренс ЖК очень мал, поэтому почти все ЖК, попавшие в общий кровоток, возвращаются в печень. Деконъюгированные в кишечнике ЖК захватываются печенью менее эффективно, чем конъюгированные.
Мало изучен механизм концентрации желчных кислот внутри гепатоцитов. желчные кислоты, как и некоторые другие анионы (бромсульфалеин, флюоресцеин), достигают высокой концентрации в гепатоците перед экскрецией в желчь. Накопление вещества в гепатоците в более высокой концентрации, чем в плазме, может быть следствием активного процесса поглощения или внутриклеточного связывания. A. I. Levi и соавт. (1969) описали два внутригепатоцитных белка (обозначенные Y и Z) с высоким сродством к бромсульфалеину, билирубину и другим органическим анионам. Существование и роль подобных механизмов в накоплении и хранении желчных кислот нуждаются в изучении.
Желчные кислоты, деконъюгированные кишечной микрофлорой, в гепатоците активируются, соединяясь с КоА, и вновь конъюгируются. Затем эти желяные кислоты быстро выделяются в желчь. К рециркулирующим желчных кислот добавляется небольшое количество вновь синтезированных желчных кислот.
По данным новейших исследований можно предположить, что желчные кислоты секретируются в желчные капилляры посредством специального активного транспортного механизма, отличного от транспорте других анионов.
Поступившие в кишечник ЖК участвуют в процессе пищеварения и всасывания жиров и посте пенно абсорбируются путем пассивной неионной диффузии на протяжении тонкого кишечника. Основная часть желчных кислот активно абсорбируется в дистальном отделе подвздошной кишки.
Портальный и экстрапортальный пути циркуляции желчных кислот
Рис- 2. Портальный и экстрапортальный пути циркуляции желчных кислот. 1 - система кровообращения, 2 - печеночная артерия, 3 - печень; 4 - печеночные вены, 5 - воротная вена; 6 - тощая кишка, 7 - -подвздошная кишка; 8 - толстая кишка, 9 - лимфатическая система.
Около 10% ЖК, не всосавшиеся в тонком кишечнике, переходят в толстый кишечник. Соли парных желчных кислот в терминальной части тонкого кишечника и в толстом кишечнике деконъюгируются бактериями, которые содержат фермент, способный разрывать пептидную связь; такого фермента нет в пищеварительных соках. Под воздействием микрофлоры толстого кишечника происходит ряд изменений в химической структуре желчных кислот. Первым этапом становится удаление 7а-гидроксильной группы. Таким образом из первичных образуются вторичные желчные кислоты; из ХК образуется дезоксихолевая (ДХК), а из ХДХК - литохолевая (ЛХК).
В толстом кишечнике всасывается большая часть ДХК и лишь незначительное количество ЛХК, вероятно, вследствие ее малой растворимости, абсорбции каловыми массами и превращения в другие метаболиты. В печени ЛХК частично связывается с глицином или таурином, а основное количество выделяется в желчь с сульфатами. Сульфат ЛХК абсорбируется в терминальном отделе подвздошной кишки, но меньше, чем другие желчные кислоты.


Детоксицирующая и клиренсная функция печени
Как уже указывалось, печень участвует в обезвреживании ряда эндогенных токсических продуктов клеточного метаболизма или веществ, поступивших извне. Детоксикации подвергаются вещества, образуемые микробами в кишечнике и через портальную систему попадающие в печень. Это токсические продукты обмена аминокислот - фенол, крезол, скатол, индол, аммиак. Реакции детоксикации осуществляются с помощью ферментов, связанных с гладким эндоплазматическим ретикулумом и митохондриями.
Окислительные процессы нейтрализуют ароматические углеводороды, некоторые стероидные гормоны, атофан. К окислительным процессам относятся дегидрирование этанола под действием алкогольдегидрогеназы. Последняя превращает этиловый алкоголь в альдегид с последующим его окислением.
Восстановительные реакции делают безвредными многочисленные нитросоединения, в том числе 2,4-динитрофенол, превращающиеся в аминосоединения.
Детоксикация ряда лекарственных веществ, например сердечных гликозидов, алкалоидов, происходит в результате гидролиза.
Некоторые вещества детоксицируются путем включения в синтез веществ, безразличных для организма или используемых в различных метаболических процессах (включение аммиака в синтез мочевины, нуклеиновых кислот).
Важнейшей реакцией детоксикации является конъюгация, ведущая к инактивированию или повышению растворимости и ускорению выведения образующихся продуктов. Обезвреживание происходит за счет соединения с глюкуроновой или серной кислотой. С помощью конъюгации инактивируются стероидные гормоны, билирубин, жлечные кислоты, ароматические углеводороды и их галогенопроизводные. В качестве обезвреживающих веществ в организме используются также глицерин, таурин, цистеин для образования парных соединений ЖК, бензойной кислоты, никотиновой кислоты.
Химический клиренс крови может осуществляться печенью путем избирательного поглощения вещества из крови и выделения его из организма желчью без химических превращений, например, холестерин может частично выделяться с желчью в неизмененном виде.
Нерастворимые частички удаляются из крови путем активного фагоцитоза купферовскими клетками. Фагоцитарные клиренсные функции купферовских клеток связаны прежде всего с их иммунной защитной ролью, они выступают в качестве фиксаторов иммунных комплексов. Купферовские клетки наряду с другими клетками ретикулоэндотелиальной системы фагоцитируют различные инфекционные агенты, удаляют из тока крови разрушенные эритроциты.


Обмен гормонов и витаминов в печени
Стероидные гормоны (глюкокортикостероиды, андрогены, эстрогены, альдостерон) образуются вне печени, но ей принадлежит важнейшая роль в их инактивации и распаде. Именно печень осуществляет ферментативную инактивацию и конъюгацию стероидных гормонов с глюкуроновой и серной кислотами. Печень активно влияет на гомеостатическую регуляцию уровня глюкокортикоидных гормонов. Она синтезирует также специфический транспортный белок крови - транскортин, который связывает гидрокортизон, делая его временно неактивным.


Инактивация серотонина и гистамина
совершается путем окислительного дезаминирования с участием высокоактивной МАО и гистаминазы. Повышение концентрации гистамина может быть одной из причин кожного зуда и язвообразования в желудочно-кишечном тракте.
Печень участвует в обмене почти всех витаминов, в ней происходит их депонирование и частично разрушение. Обмен витамина А на всех этапах прямо зависит от функции печени. Всасывание поступающего с пищей жирорастворимого витамина А в кишечнике вместе с другими веществами липидной природы происходит благодаря эмульгирующему действию желчи. Большая часть витамина А накапливается печенью в мельчайших жировых капельках в цитоплазме печеночных и купферовских клеток. Так же, как и в кишечнике, в печени каротин превращается в витамин А.
При заболеваниях печени нарушаются всасывание в кишечнике, накопление в печеночной ткани и поступление витамина в кровь. Присутствие желчи в кишечнике - необходимое условие всасывания и других жирорастворимых витаминов - D, Е, К. Витамин Е (токоферол) ингибирует процессы окисления, и его недостаток в организме ведет к повреждению паренхимы печени. Витамин К участвует в синтезе факторов протромбинового комплекса, осуществляемом гепатоцитами, и недостаточное его всасывание в кишечнике служит одной из причин гипопротромбинемии и геморрагического диатеза при патологии печени.
Обмен большинства витаминов комплекса В непосредственно связан с функцией печени. Многие из них входят в состав коферментов. Функции окислительных дыхательных ферментов связаны, в частности, с присутствием в ткани витамина В1, депонируемого в форме кокарбоксилазы и участвующего в декарбоксилировании ?-кетокислот. Витамин В2 (рибофлавин) активно участвует в окислительном дезаминирования аминокислот. Витамин В5 (пантотеновая кислота) входит в состав ацетилкоэнзима А и непосредственно связан с последними этапами цикла Кребса в образовании конечных продуктов метаболизма белков, жиров, углеводов, детоксикацией ароматических аминов, сульфонамидов и др. Витамин В6 (пиридоксин) является коэнзимом ферментов, участвующих в трансаминировании и декарбоксилировании аминокислот, в катализе основных жирных кислот, входит в состав фосфорилазы, гистаминазы.


Обмен ферментов в печени
Все метаболические процессы в печени осуществляются только благодаря содержащимся в гепатоцитах соответствующим ферментам. Синтез ферментов является одной из важнейших функций печени, а динамическое постоянство ферментных констелляций в печени - необходимое условие ее нормального функционирования. Ферменты имеют белковую природу и синтезируются рибосомами. Вместе с тем все клеточные органеллы обладают своим специфическим набором ферментов, определяющим их биологическую роль. Митохондрии содержат главным образом ферменты энергетического обмена (ферменты окислительного фосфорилирования, цикла Кребса, АТФ-азу и др.). С гранулярным эндоплазматическим ретикулумом связаны ферменты белкового синтеза, с гладкой его частью - ферменты углеводного, липидного обмена, большинства реакций детоксикации, с лизосомами - основные гидролазы.
В процессе распада большинство ферментов подвергается протеолизу. Другой путь разрушения ферментов состоит в прижизненной термической инактивации. Некоторые ферменты выделяются с желчью (щелочная фосфатаза, лейцинаминопептидаза) или с мочой (амилаза).
Патологические процессы в печени вызывают различные нарушения ферментативного равновесия в ней и изменение активности ферментов печеночного происхождения в сыворотке крови. Определение активности тех или других ферментов в сыворотке крови позволяет судить о характере и глубине поражения различных компонентов гепатоцитов.
В клинической практике ферменты разделяют по функции клеток печени и их мембран, определяющих активность этих ферментов в сыворотке крови [Хазанов А. И., 1968; Блю-гер А. Ф., 1975]. Это разделение весьма удобно для клинического анализа ферментных сдвигов. Выделяют следующие группы ферментов.
Секреторные синтезируются гепатоцитами и в физиологических условиях выделяются в плазму, выполняя в ней определенные функции. И. Тодоров называет эти ферменты собственными ферментами плазмы (сыворотки) крови. К ним относятся холинэстераза, церулоплазмин, про- и частично антикоагулянты.
Индикаторные ферменты выполняют определенные внутриклеточные функции. Некоторые из них (лактатдегидрогеназа, аланин- и аспартатаминотрансферазы, альдолаза) в физиологических условиях в небольших количествах постоянно присутствуют в плазме крови, другие выявляются в сыворотке только при глубоких повреждениях печени. Физиологическая роль ферментов, постоянно присутствующих в плазме, неясна. Предполагают, что выход ферментов в кровь в физиологических условиях связан с состоянием клеточной мембраны, так как для поддержания определенной плотности мембраны нужен постоянный расход энергии.
Вероятно, присутствие ферментов в плазме в нормальных условиях зависит от места расположения фермента в гепатоците и его способности проникать через клеточную мембрану. Индикаторные ферменты в зависимости от расположения в клетке разделяются на цитоплазматические (лактатдегидрогеназы, аланинаминотрансфераза), митохондриальные (глютаматдегидрогеназа) и ферменты, встречающиеся в обеих клеточных структурах - аспартатаминотрансфераза и малатдегидрогеназа.
Схема изменения активности различных ферментов в норме и при заболеваниях печени
Рис. 3.Схема изменения активности различных ферментов в норме и при заболеваниях печени (по А. И. Хазанову).
А - в норме; Б - в патологии. I - секреционные ферменты (холинэстераза); II - III - индикаторные ферменты (аминотрансферазы, сорбитдегидрогеназа); IV - экскреционные ферменты (щелочная фосфатаза, частично лейцинаминопептидаза).
Экскреторные ферменты образуются в печени и частично в других органах, в физиологических условиях выделяются с желчью (лейцинаминопептидаза, (3-глюкуронидаза, 5-нуклеотида за, щелочная фосфатаза).
Изменение активности этих групп ферментов в физиологических условиях и при различных заболеваниях печени схематично представлено на рис. 13.
Достижения клинической энзимологии в определении . места образования ферментов позволили разделить их по локализации:
1) универсально распространенные ферменты, активность которых обнаруживается не только в печени, но и в других органах - аминотрансферазы, фруктозо-1-б-дифосфатальдолаза;
2) печеночноспецифические (органоспецифические) - ферменты, активность которых исключительно или наиболее выявляется в печени. К ним относятся уроканиназа, аргиназа, фруктозо-1-фосфатальдолаза, холинэстераза, орнитинкарбамилтрансфераза, сорбитдегидрогеназа и др.;
3) клеточноспецифические ферменты печени относят преимущественно к гепатоцитам, купферовским клеткам или желчным канальцам, (5I-нуклеотидаза, щелочная фосфатаза, аденозинтрифосфатаза);
4) органеллоспецифические ферменты, как уже указывалось выше, являются маркерами определенных органелл гепатоцита: митохондриальные (глютаматдегидрогеназа, сукцинатдегидрогеназа, цитохромоксидаза), лизосомальные (кислая фосфатаза, дезоксирибонуклеаза, рибонуклеаза), микросомальные (глюкозо-6-фосфатаза).
Подобная классификация не лишена недостатков хотя бы потому, что ряд печеночноспецифических ферментов не являются абсолютно специфичными для печени. Ее несомненное достоинство в том, что она значительно расширяет и детализирует оценку функциональных повреждений гепатоцитов с помощью сывороточной ферментограммы.


Запись на консультацию:
телефон: +7 (499) 324 9721 - с 900 до 1700

Определение цирроза печени, этиология. Часть I.Вверх
 

© 2004 Центр Экстракорпоральной Гемокоррекции.
115409, Москва, ул. Москворечье, д. 16а;


All rights reserved
Любое копирование и размещение в сторонних источниках информации возможно только
при наличии прямой ссылки на www.center-hc.ru

 

liveinternet.ru: показано число просмотров и посетителей за 24 часа